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ABSTRACT: Tropical precipitation and circulation are often coupled and span a vast spectrum of scales from a few to
several thousands of kilometers and from hours to weeks. Current operational numerical weather prediction (NWP) mod-
els struggle with representing the full range of scales of tropical phenomena. Synoptic to planetary scales are of particular
importance because improved skill in the representation of tropical larger-scale features such as convectively coupled equa-
torial waves (CCEWs) has the potential to reduce forecast error propagation from the tropics to the midlatitudes. Here we
introduce diagnostics from a recently developed tropical variability diagnostics toolbox, where we focus on two recent ver-
sions of NOAA’s Unified Forecast System (UFS): operational GFSv15 forecasts and experimental GFSv16 forecasts from
April to October 2020. The diagnostics include space–time coherence spectra to identify preferred scales of coupling be-
tween circulation and precipitation, pattern correlations of Hovmöller diagrams to assess model skill in zonal propagation
of precipitating features, CCEW skill assessment, plus a diagnostic aimed at evaluating moisture–convection coupling in
the tropics. Results show that the GFSv16 forecasts are slightly more realistic than GFSv15 in their coherence between pre-
cipitation and model dynamics at synoptic to planetary scales, with modest improvements in moisture convection coupling.
However, this slightly improved performance does not necessarily translate to improvements in traditional precipitation
skill scores. The results highlight the utility of these diagnostics in the pursuit of better understanding of NWP model per-
formance in the tropics, while also demonstrating the challenges in translating model advancements into improved skill.

KEYWORDS: Forecast verification/skill; Diagnostics; Model evaluation/performance;
Numerical weather prediction/forecasting; Tropical variability

1. Introduction

While significant improvements have been made in numeri-
cal weather prediction (NWP) model forecasts in recent deca-
des (Bauer et al. 2015), synoptic-scale forecasts still tend to be
less skillful in the tropics than in midlatitude regions (Zhu
et al. 2014). This is in part related to the difference in the
dominant dynamics between the two regions. A weaker Cori-
olis force and stronger insolation at low latitudes means that
waves strongly coupled to convection are the main driver of
synoptic-scale weather in the tropics, whereas large-scale ro-
tational dynamics are dominant in midlatitudes. Further, trop-
ical precipitation is not driven by baroclinic waves associated
with strong high and low pressure regions as in midlatitudes,
but rather happens more spontaneously in the form of localized
convective precipitation. NWP therefore relies more strongly on
convective parameterizations in the tropics, which further con-
tributes to forecast uncertainty (Selz and Craig 2015).

Deficient tropical skill has far-reaching impacts that are not
confined to local model errors. When localized convection be-
comes organized on large enough scales it can influence
weather patterns in the tropics over several days and, through
teleconnections, impact weather in midlatitudes (Branstator
2014; Stan et al. 2017; Dias and Kiladis 2019). Within the
tropics the large-scale dynamics that vary on time scales of
days to weeks are dominated by easterly waves and tropical
depressions, convectively coupled equatorial waves (CCEWs)
and the Madden–Julian oscillation (MJO). On longer time

scales El Niño–Southern Oscillation changes the sea surface
temperature and atmospheric circulation over the tropical
Pacific impacting weather systems across the globe. There is
substantial observational evidence that variability in midlati-
tudes is correlated at lag with large-scale convective activity in
the tropics. The MJO in particular has been shown to interact
strongly with the subtropical jet stream, the Pacific/North
American Oscillation, and the North Atlantic Oscillation
through teleconnections (e.g., Ferranti et al. 1990; Lin et al.
2009; Stan et al. 2017). Through its influence on the subtropi-
cal jet, the MJO can also impact the frequency of blocking
events (Hamill and Kiladis 2014). Precipitation has been
shown to be modulated by the MJO, with extreme extratropi-
cal rainfall events becoming more common during active
phases (Jones et al. 2004). Past studies have shown 1) that
convection in the tropics can influence midlatitude variability
(Branstator 2014; Stan et al. 2017) and 2) that improved fore-
cast skill in the tropics translates to improvements in midlati-
tude forecast skill several days later (Jung et al. 2010; Dias
and Kiladis 2019). By nudging the tropical atmosphere toward
reanalysis, and thus limiting errors in the tropics, studies such
as Ferranti et al. (1990), Jung et al. (2010), Dias et al. (2021)
show improvements in mean absolute error in 500-hPa geopo-
tential height in the Northern Hemisphere midlatitudes at
weeks 3 and 4. While the findings from tropical nudging ex-
periments should be viewed as an upper bound of what can
be achieved, they also highlight the potential for a reduction
in tropical errors to improve midlatitude forecasts. Therefore,
improving the representation of tropical sources of subsea-
sonal to seasonal (S2S) predictability is an important stepCorresponding author: Maria Gehne, maria.gehne@noaa.gov
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toward realizing some of the remote potential skill at longer
lead times.

The potential impact of improvements of forecast skill in
the tropics can in practice be estimated by assessing the pre-
dictability associated with the MJO and CCEWs, since these
are organized disturbances that could presumably be im-
proved in models. Current NWP models struggle to predict
these large-scale phenomena well at longer lead times (Dias
et al. 2018; Bengtsson et al. 2019; Yang et al. 2021). While the
reasons for the deficient skill at low latitudes are not fully un-
derstood, a number of studies suggest that improvements in
CCEWs and MJO simulations could potentially lead to im-
proved tropical skill (Li and Stechmann 2020; Judt 2020). As
these phenomena involve coupling of the large-scale circula-
tion to convection it is helpful to keep in mind two more gen-
eral questions when evaluating model forecasts in the tropics:
1) Given the correct dynamic and thermodynamic evolution,
is model convection responding realistically? and 2) Given
that convection is occurring within a CCEW, does the model
propagate the disturbance correctly? Of course, dynamics,
thermodynamics and convection are highly coupled in the
tropics and errors in one part of the system will feed back
onto the others. Evaluating this coupling allows better insight
in tropical model errors and improvements.

Developing process oriented diagnostics for global circula-
tion models (GCMs) has been a community focus in recent
years (Maloney et al. 2019). In the tropics, one class of diag-
nostics has to do with convective transition, or the statistics
that characterize the probability density functions of column
water vapor (CWV) for precipitating points, the pickup of
precipitation as a function of column water vapor, and the de-
pendence of the moisture–precipitation relation on tropo-
spheric temperature. Those diagnostics indicate that for a
model to do well with convective transition, the convective
parameterization must capture multiple aspects of the trigger-
ing of deep convection. This requires that the dependence of
the deep convective plume on lower free tropospheric humid-
ity by entrainment is well represented (Kuo et al. 2020). There
is evidence that improved thermodynamic convection cou-
pling in GCMs is related to improvements in CCEW variabil-
ity (Weber et al. 2021). For NWP it has been shown that
better representation of the interaction between cumulus con-
vection and large-scale tropical circulation improves orga-
nized convection and leads to more coherently propagating
waves in the tropics (Bengtsson et al. 2019, 2021). Recent
studies of CCEWs in NWP by Dias et al. (2018) and Yang
et al. (2021) showed that the models considered have a ten-
dency to decay CCEW amplitude and propagate CCEWs too
quickly. This has implications for high impact weather fore-
casts in the tropics, as episodes of above normal precipitation
tend to be associated with CCEWs.

The goal of this work is to introduce diagnostics for the
tropics aimed mainly at phenomena with high potential pre-
dictability. These metrics are needed to assess NWP forecast
skill of large spatial and lower-frequency phenomena such as
CCEWs as well as to assess the representation of physical pro-
cesses that are important for their initiation and maintenance.
These diagnostics will also aid in identifying sources of model

error in the tropics and in decision making as to whether
changes in the models have the potential to improve model
skill with respect to CCEWs and the MJO. The motivation
for these diagnostics is to go beyond statistical measures of
model skill to be able to assess model performance of convec-
tively coupled phenomena known to have potential predict-
ability of several days to weeks. The diagnostics introduced
below fall into two categories: process-level diagnostics and
forecast performance evaluation diagnostics that specifically
target convective variability are larger spatiotemporal scales.
This effort is related to the Model Diagnostics Task Force
(MDTF) effort (Maloney et al. 2019) in its goal for process-
based diagnostics, but the focus here is on NWP models and
diagnostics as a function of lead time, as discussed for exam-
ple in the Model Evaluation Tools (MET) software package
hosted at NCAR (Brown et al. 2021). The nature of NWP
means that for very short term forecasts (out to about
1–2 days) initial conditions are most important for model per-
formance. Diagnostics with lead time dependence allow us to
distinguish between model and initialization errors. Other
considerations are that, in general, operational NWP forecasts
are initialized once or several times a day and run out to a few
weeks and that model versions change frequently. Therefore,
long (multiyear) time series of a particular version of NWP
forecast are not commonly available. If the diagnostics are to
be used to inform operational model development, they need
to take that into account. To complement the analysis pre-
sented in this paper, we also include a brief description of a
python module containing all diagnostics (section 4e). This
software is available as a stand-alone package and several of
the diagnostics are also included in the May 2021 release of
METcalcpy (Win-Gildenmeister et al. 2021).

The paper is organized as follows. Section 2 gives details on
model versions and verification data used. Section 3 shows
how the model versions perform using commonly used verifi-
cation methods before applying the tropical diagnostics to the
same model versions in section 4. The results are discussed in
section 5.

2. Model data and observations

We use output from two versions of NOAA’s Unified Forecast
System (UFS) for comparison: The operational model version
GFSv15.1 (Yang and Tallapragada 2018; Maxson 2019, GFSv15)
during April–October 2020 and real-time parallel forecasts of the
GFSv16 (Yang et al. 2020; Farrar 2021, GFSv16) for the same
time period. Both model versions are initialized every 6 h and
run out to lead time 240 h. The model output is regridded to a
regular grid at 18 resolution.

One of the main differences between the model versions
used here and the model version assessed in Dias et al. (2018)
involves the dynamical core. The GFS version in Dias et al.
(2018) study used the global spectral model which has since
(starting with GFSv15) been replaced with the finite volume
cubed sphere dynamical core (FV3; Harris et al. 2021). Both
GFSv15 and GFSv16 are using the FV3 dynamical core in
nonhydrostatic mode, with 768 grid cells on a cube sphere tile
(C768), which corresponds to a global horizontal resolution of
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about 13 km. GFSv15 has 64 vertical layers and a model top
at 54 km, and uses a physics suite consisting of the GFDL
cloud microphysics scheme (Chen and Lin 2011, 2013; Zhou
et al. 2019), a first-order turbulent transport scheme which is
using a “hybrid” eddy diffusion mass flux (EDMF) approach
(Han and Pan 2011; Han et al. 2017), and shallow and deep
cumulus parameterizations which are originally based on
Arakawa and Schubert (1974), but have over the years seen
substantial updates following e.g., Pan and Wu (1995), Han
and Pan (2011), and Han et al. (2017). Land surface processes
in the GFSv15 physics suite are described by the Noah land
surface model (Ek et al. 2003), and shortwave and longwave
radiative fluxes and heating rates are parameterized using
the RRTMG radiation scheme (Mlawer et al. 1997; Clough
et al. 2005; Iacono et al. 2008). Finally, gravity wave drag is
simulated as described by Alpert et al. (1988). The GFSv15
analysis is obtained through the Global Data Assimilation
System (GDAS), which uses a hybrid four-dimensional
ensemble variational formulation “hybrid 4DEnVar” (Kleist
and Ide 2015).

The GFSv16 uses the same horizontal grid as GFSv15, but
has increased vertical resolution consisting of 127 vertical
layers and a model top at 80 km. Major changes in GFSv16
physics parameterizations compared with GFSv15 are the in-
troduction of the scale-aware turbulent kinetic energy–eddy
diffusion mass flux (TKE-EDMF) atmospheric boundary
layer turbulence scheme (Han and Bretherton 2019) and the
addition of parameterizations of subgrid-scale nonstationary
gravity wave drag (Yudin et al. 2016, 2018). Several updates
were also made in the data assimilation system, including
the use of a four-dimensional incremental analysis update
(4D-IAU) technique (Lei and Whitaker 2016), assimilation of
new satellite observations and improved quality control.
More details on GFS model changes can be found at https://
www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
(accessed 9 April 2021).

The diagnostics below are applied as a function of lead
time to assess how model initialization on the one hand and
model physics on the other are able to represent important as-
pects of tropical dynamics. Model output used for these diag-
nostics are precipitation, divergence (computed from winds),
temperature, and specific humidity at all lead times and pres-
sure levels between 1000 and 100 hPa.

Observational precipitation data used for verification are
Integrated Multi-satellitE Retrievals for GPM V6 (IMERG;
Huffman et al. 2019), the PERSIANN climate data record
(CDR) (PERSIANNCDR; Ashouri et al. 2015; Sorooshian
et al. 2014) and the Tropical Rainfall Measuring Mission
(TRMM) 3B42 (Huffman et al. 2007; Tropical Rainfall Measuring
Mission 2011). ERA5 reanalysis data (ERA5; Hersbach et al.
2020, 2018) are used for verification of dynamical fields, ensur-
ing that the verification is based on an entirely independent
system from the forecasts. All of these datasets were regridded
to 6-hourly, 18 resolution except for PERSIANNCDR, which
is daily. Single-level variables used are precipitation, surface
pressure and land sea mask. Zonal wind, meridional wind,
temperature, and specific humidity are used at vertical levels
between 1000 and 100 hPa.

3. Commonly used forecast verification methods

NWP verification routinely uses statistical metrics to assess
model skill (Brown et al. 2021). Below we apply some of the-
most commonly used metrics to the GFS forecasts and com-
pare model skill in midlatitudes and in the tropics, using
IMERG precipitation and ERA5 for verification. While this
is not the same setting as in operational verification, it allows
a consistent comparison of the performance of the two model
versions. All metrics are computed for two latitude bands
208S–208N (tropics) and 358–508N (Northern Hemisphere
midlatitudes). The metrics are included here to illustrate how
model performance with respect to these more standard met-
rics is not necessarily an indication of performance with respect
to the tropical diagnostics metrics introduced in section 4.

a. Precipitation

1) EQUITABLE THREAT SCORE

The equitable threat score (ETS) measures the fraction of
observed events that were correctly predicted, adjusted for
hits associated with random chance (e.g., it is easier to cor-
rectly forecast rain occurrence in a wet climate than in a dry
climate). The ETS is often used in the verification of rainfall
in NWP models because its “equitability” allows scores to be
compared more fairly across different climate regimes. Because
it penalizes both misses and false alarms in the same way, it is
less useful for distinguishing the source of forecast errors (Wilks
2011; Jolliffe and Stephenson 2012).

Figures 1a–c show that both models perform worse in the
tropics at short lead times than in midlatitudes for different
precipitation percentiles (50, 75, 95), where the 95th percentile
refers to the top 5% of precipitation totals during the period
over a region (tropics and Northern Hemisphere midlatitudes
here) and correspondingly for the other percentiles. Tropical
performance initially decays much more rapidly than in the
midlatitudes, but at leads longer than around 5 days this
reverses, consistent with previous results by Zhu et al. (2014).
GFSv16 ETS is comparable or slightly improved compared
to GFSv15 for both midlatitudes and tropics.

2) FREQUENCY BIAS

Precipitation frequency bias (FBias) measures the ratio of the
frequency of forecast events to the frequency of observed events,
indicating whether the forecast system has a tendency to under-
forecast (FBias , 1) or overforecast (FBias . 1) events. FBias
does not measure how well the forecast amplitude corresponds
to the observations, but only measures relative frequencies.

Figures 1d–f show that the FBias is improved in GFSv16
in the 95th percentile and deteriorated for the lower percentiles,
with GFSv16 overforecasting precipitation frequency in the
tropics and underforecasting it in midlatitudes.

3) FRACTIONS SKILL SCORE

The fractions skill score (FSS) compares the forecast and
observed precipitation fraction over increasing areas. It
ranges from 0 (complete mismatch) to 1 (perfect match). The
value of FSS above which the forecasts are considered to have

G EHNE E T AL . 1663SEPTEMBER 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/02/23 10:02 PM UTC

https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html
https://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html


better than random skill is given by FSSuseful = 0.5 1 fo/2,
where fo is the domain average observed fraction. The small-
est area for which FSS $ FSSuseful can be considered the
“skillful scale,” this will depend on lead time as well. As the
area used to compute the fractions gets larger, the score will as-
ymptote to a value that depends on the ratio between the forecast
and observed frequencies of the event. The closer the asymptotic
value is to 1, the smaller the forecast bias. The score is most sensi-
tive to rare events (e.g., small rain areas).

The tropical FSS is lower than midlatitude FSS for a given
area and across percentiles until about 4–5-day lead time for

both GFSv15 and GFSv16 (Figs. 1g–l). For longer lead times
the tropical FSS eventually outperforms FSS in midlatitudes,
with the cross-over happening at earlier lead times for lower
percentiles. The decrease in FSS is steeper initially for precipi-
tation forecasts in the tropics than in midlatitudes. In the
tropics, FSS is slightly improved in GFSv16 over GFSv15 for
higher percentile thresholds and shorter lead times.

b. Tropospheric and near-surface verification statistics

Next we consider verification metrics that assess skill of
dynamic and thermodynamic variables in the troposphere.

FIG. 1. Precipitation skill scores for tropics (208S–208N) and Northern Hemisphere midlatitudes (358–508N). Shown are (a)–(c) equitable
threat score, (d)–(f) frequency bias, and fraction skill score for area sizes of (g)–(i) 28 squared and (j)–(l) 48 squared for GFSv15
(blue lines) and GFSv16 (orange lines) for tropics (208S–208N, solid lines) and Northern Hemisphere midlatitudes (358–508N, dotted
lines). Horizontal lines indicate the value of FSSuseful for both model versions.
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The metrics considered here are anomaly correlation (ACC),
bias and mean square error skill score (MSESS). These met-
rics are described in more detail below.

Results are shown below for the same latitude bands as
above and the tropospheric variables: 500-hPa height (h500)
and 200-hPa winds (u200, v200). We also considered winds at
850 hPa with qualitatively similar results. Near-surface varia-
bles considered here are 2-m air temperature (T2m), 2-m rela-
tive humidity (q2m), and 10-m zonal wind (u10m).

1) ANOMALY CORRELATION

The ACC is computed by first removing the time mean of
the verification (the analysis in this case) and the time mean
of the forecast at each lead time. This removes the impact of
model bias from model drift. The anomalies are then used to
compute a pattern correlation between the forecast and verifi-
cation at each time and the result is averaged over all times.

Figure 2a shows that for both model versions ACC for h500
is slightly lower in the tropics than midlatitudes until lead
time 120 h, after which the ACC in the tropics is higher. How-
ever, since tropical temperature gradients are weak, h500
does not have large variability within the tropics, making the
ACC metric not very informative in that region. For u200 and
v200 (Figs. 2b,c), ACC is deteriorated in GFSv16 in the
tropics and comparable to GFSv15 in midlatitudes.

Figures 3a,c show comparable skill in both model versions
in T2m and U10m ACC in the tropics with the tropics having
lower ACC out to 96-h lead time and higher ACC after that.

GFSv16 skill in midlatitudes is improved after 5-day lead
time. Figure 3b for q2m shows comparable ACC in GFSv16
compared to GFSv15 in both regions. We also considered
land points only and observed very similar behavior (not
shown). In general, the near-surface variables are not well
constrained by the model but are important forecast variables
for end users, which is the reason we show them here.

2) BIAS

To compute the mean bias the verification mean is removed
from the forecast and then the time average is taken at each
lead time. Bias is improved for h500, u200, v200 in the tropics
(Figs. 2d–f) in model version GFSv16 until at least 5-day
lead time. This is similar for bias in T2m, q2m, and u10m
(Figs. 3d–f). Considering land only, bias is improved in
GFSv16 for q2m in both tropics and mid latitudes, bias is im-
proved for q2m in the tropics until 72-h lead time and increases
for T2m and u10m.

3) MEAN SQUARE ERROR SKILL SCORE

The MSESS is computed based on the MSE at each lead
time and the verification variance is used as an estimate of the
climatological MSE (Murphy 1988; Jolliffe and Stephenson
2012).

MSESS is lower in the tropics than midlatitudes for both
model versions for h500, u200 and v200 (Figs. 2g–i) and
GFSv16 performs worse in the tropics and comparable in mid-
latitudes. MSESS performance for the near-surface variables

FIG. 2. Tropospheric skill scores for GFSv15 (blue lines) and GFSv16 (orange lines) tropics (208S–208N, solid lines) and Northern
Hemisphere midlatitudes (358–508N, dashed lines). Shown are (a)–(c) anomaly correlation, (d)–(f) bias, and (g)–(i) mean square error skill
score for (left) 500-hPa geopotential height, (center) 200-hPa zonal wind, and (right) 200-hPa meridional wind.
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(Figs. 3g–i) is similar to that seen for the near-surface ACC.
Land only MSESS is very similar to the results shown in
Figs. 3g–i as well.

Summarizing the results of this section, tropical forecast
skill tends to lag midlatitude skill early in the forecast when
skill tends to be high based on metrics commonly used for
verification. At longer lead times skill in the tropics tends to
be higher than midlatitude skill, but overall skill is low.

4. Tropical diagnostics

Biases in precipitation means and variances, when verified
against IMERG, tend to be large where precipitation is large
and where model precipitation is dominated by parameter-
ized and not large-scale precipitation (Fig. 4). Precipitation er-
rors in the tropics are largest in the intertropical convergence
zone (ITCZ) and South Pacific convergence zone regions
with model mean precipitation exceeding IMERG. Both
model versions and ERA5 underestimate mean precipitation
near the equator in the central Pacific. This error pattern
leads to more of a double ITCZ pattern in this region than is
seen in IMERG. Model and ERA5 variance are smaller
than IMERG precipitation variance (not shown). This, to-
gether with the larger mean precipitation indicates that too
much of the model precipitation falls at rates that are too
small compared to IMERG, a common issue with model
and reanalysis precipitation (Stephens et al. 2010; Pendergrass
and Hartmann 2014; Gehne et al. 2016). This can be seen in
Figs. 4d,f,h,j,l where the frequency of occurrence of light

precipitation exceeds IMERG over most ocean regions and
by about 30% over the subtropical oceans. While the mean
errors are smaller for GFSv16 at lead time 6h (Figs. 4e,g),
there is an increase in the occurrence of light rain compared
to GFSv15 (Figs. 4f,h).

Based on the considerations above and in the previous sec-
tion, we argue that having diagnostics available that can help
in identifying forecast error sources in the tropics related to
moisture–convection–circulation coupling will be highly bene-
ficial. In the following sections we introduce several diagnos-
tics that assess the coupling between dynamics and convection
to better understand model dynamics and errors in the tropics
and how to improve them. This is by no means an exhaustive
suite of possible diagnostics for tropical convection, but rather
an adaptation to NWP evaluation of diagnostics that have
been successfully used in both observational studies and cli-
mate model evaluation.

a. Hovmöller diagrams and pattern correlation

Hovmöller diagrams are time–longitude plots of latitude
band averages and were first introduced to analyze troughs
and ridges in 500-hPa height observations in midlatitudes
(Hovmöller 1949). Since then they have been widely used in
NWP and for identifying zonal propagation characteristics
of large-scale tropical phenomena (e.g., Kiladis et al. 2009;
Persson 2017; Dias et al. 2018).

Figures 5a–d show precipitation averaged between 108S
and 108N for IMERG, ERA5, and model precipitation at
6h lead time. Upon initial inspection, the correspondence

FIG. 3. Surface skill scores for GFSv15 (blue lines) and GFSv16 (orange lines) tropics (208S–208N, solid lines) and Northern Hemisphere
midlatitudes (358–508N, dashed lines). Shown are (a)–(c) anomaly correlation, (d)–(f) bias, and (g)–(i) mean square error skill score for (left)
2-m temperature, (center) 2-m specific humidity, and (right) 10-m zonal wind.
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FIG. 4. Precipitation mean and frequency of occurrence of light rain (1–24 mm day21) from April through October 2020 for (a) IMERG
mean and (b) IMERG frequency of occurrence of precipitation rates 1 , P , 24 mm day21. Differences with IMERG means are shown
for (c) ERA5 precipitation, (e) GFSv15 FH06, (g) GFSv16 FH06, (i) GFSv15 FH120, and (k) GFSv16 FH120. Difference with IMERG fre-
quency of light precipitation occurrence are shown for (d) ERA5 precipitation, (f) GFSv15 FH06, (h) GFSv16 FH06, (j) GFSv15 FH120,
and (l) GFSv16 FH120.
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between model precipitation and IMERG/ERA5 is high and
large-scale eastward-propagating disturbances can easily be
identified by eye in all four panels. The larger areas with light
blue shading indicate that both models and ERA5 precipita-
tion (Figs. 5b–d) tend to have more light precipitation than
IMERG (Fig. 5a).

Figure 5e shows the pattern correlation of model precipita-
tion averaged between 108S and 108N with model precipita-
tion at 6-h lead time and IMERG precipitation for the entire
evaluation period. Confidence intervals are computed by
random subsampling of the data 1000 times, computing the
pattern correlation, and picking the top and bottom 2.5%
percentiles. The correlation between IMERG and ERA5 pre-
cipitation is 0.63 and does not change with lead time. The
moderate correlations between IMERG and ERA5 likely
stem from the lack of direct assimilation of satellite observa-
tions of rain rates in ERA5 in combination with the substan-
tial impact of model physics in reanalysis rain rates. Initially
model correlations are highest with the precipitation at 6-h
lead time, are comparable with the IMERG-ERA5 correla-
tion between 6 and 18 h and drop below 0.5 by 30-h lead time
for all cases. The pattern correlation is higher for GFSv16
precipitation for all cases and correlations with precipitation
at 6-h lead time drop at a slightly slower rate for GFSv16.

Overall GFSv16 shows higher correlation with its own pre-
cipitation at 6-h lead time, ERA5 (not shown), and IMERG
precipitation. The precise reasons for this would be challeng-
ing to pinpoint because, in addition to changes in model phys-
ics related to clouds and precipitation, the transition from
GFSv15 to GFSv16 also included changes in vertical resolu-
tion and in the data assimilation system. What is clear is that
much potential skill in precipitation forecasts is already lost
during the first few hours after initialization. Even provided
with our best estimate of the dynamical and thermodynamic
state of the system, the model loses a lot of forecast skill be-
cause model convection is not producing the correct quantity
or spatial distribution of precipitation.

While the fast drop in initial skill might be partially related
to drift toward the models’ own climatology and/or chaotic
processes, the next few sections show that much of the tropi-
cal skill loss is likely related to biases in how the models cou-
ple convection to dynamics and thermodynamics along with
struggling to evolve those aspects of the system correctly.

b. CCEW activity and skill

Identifying convectively coupled equatorial waves (CCEWs)
in forecasts has been done following several different ap-
proaches. These include padded filtering of model forecasts

FIG. 5. Hovmöller diagrams of 6-hourly precipitation averaged from 108S to 108N for (a) IMERG, (b) ERA5, (c) GFSv15, and
(d) GFSv16. (e) Pattern correlation of latitude averages (108S–108N) between ERA5 and IMERG (black horizontal line), GFSv15 and
GFSv15 FH06 (solid blue), GFSv15 and IMERG (dotted blue), GFSv16 and GFSv16 FH06 (solid orange), and GFSv16 and IMERG
(dotted orange) are shown. The 95% confidence intervals are shown in shading.
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(Janiga et al. 2018; Schreck et al. 2020), projection onto spa-
tial patterns derived from observations (Gottschalck et al.
2010) and projection of model forecasts onto theoretical
spatial structures (Yang et al. 2021). Here we use an ap-
proach similar to the one applied by Gottschalck et al.
(2010) for the MJO where we derive empirical orthogonal
functions (EOFs) based on IMERG precipitation data as
the basis for assessing CCEW activity. This approach has
the advantage of avoiding the application of relatively low-
frequency temporal filters to short model forecast time se-
ries. We define EOF based indices for Kelvin, equatorial
Rossby (ER), mixed Rossby–gravity (MRG) waves, and
the MJO. While there are already MJO indices and EOFs
available that are based on OLR and winds such as the
RMM and OMI (Wheeler and Hendon 2004; Kiladis et al.
2014), for consistency with the CCEW skill assessment we
use precipitation EOFs for the MJO here. See appendix A
for more details.

CCEW activity (Figs. 6a,b) are shown for Kelvin and ER
waves and skill (Figs. 6c–f) for Kelvin, ER, MRG and the
MJO. ERA5 skill for the MJO and MRG waves is about 0.8,
but only about 0.7 for Kelvin and ER waves. This relatively

low skill for Kelvin and ER waves even for ERA5 could be
due to only a few strong events that occurred during this time
period (Fig. 6a). There are a few strong ER events (Fig. 6b),
which appear to be equally well captured by ERA5, GFSv15,
and GFSv16. This is also evident in the model skill correlation
where Kelvin skill is below 0.5 by 12-h lead time (Fig. 6c),
while MJO skill stays above 0.5 past 5-day lead time (Fig. 6f).
GFSv16 has slightly higher skill correlation values for the first
24 h into the forecast for ER and MJO.

Performance of GFSv16 is slightly improved over GFSv15
for ER and MJO in this diagnostic during the first 48 h of the
forecast. Skill for these wave types for GFSv16 is comparable
to IMERG-ERA5 correlation until 12-h lead time. It is inter-
esting to note that the skill correlations are much higher ini-
tially than for the Hovmöller pattern correlations (Fig. 5).
This is conceivably due to the EOFs picking up larger zonal
scales of variability which the models can forecast more ro-
bustly (at least at short lead times) than the smaller scales.
Considering EOFs for OLR and zonal wind at 200 and 850 hPa,
computed by regressing ERA5 winds and observed OLR onto
the precipitation principal components, we see similar behavior
(not shown). Skill for OLR is higher than precipitation for

FIG. 6. CCEW activity and skill compared to IMERG precipitation (black dashed) for ERA5 (black solid), GFSv15
(blue), and GFSv16 (orange). (a) Kelvin activity and (b) ER activity for the period December 2019–March 2020. Skill
correlation between model activity and IMERG activity for (c) Kelvin activity, (d) ER activity, (e) MRG activity, and
(f) MJO activity. In (c)–(f) the skill correlation between IMERG and ERA5 is shown at all lead times (black solid)
for comparison. The 95% confidence intervals are shown in shading.
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Kelvin (by 0.2) and ER (by 0.15) and comparable for MRG
and MJO, while skill for zonal winds is much higher, initially
above 0.9. There is no significant difference between the model
versions except that GFSv16 ER u200 outperforms GFSv15
after lead time 144 h and GFSv15 Kelvin u200 outperforms
GFSv16 after lead time 168 h.

c. Space–time coherence spectra

Coherence-squared wavenumber-frequency spectra between
two variables highlight temporal and spatial scales where the
two variables have significant correlation. Coherence-squared
spectra are computed at each latitude by performing a two
dimensional fast Fourier transform on both variables of interest
to generate the two-dimensional frequency–zonal wavenumber

power, quadrature, and cospectra. Latitudinal averages (either
symmetric or antisymmetric across the equator) are then taken
(Wheeler and Kiladis 1999; Hendon and Wheeler 2008). We
only show results for the symmetric spectra, but the same gen-
eral conclusions apply to the antisymmetric spectra as well. The
coherence squared is the sum of the squared co and quadrature
spectra divided by the product of the two power spectra. As an
example, Fig. 7a shows the long-term coherence squared be-
tween ERA5 and IMERG precipitation. If there was perfect
agreement between the reanalysis and satellite precipitation the
coherence squared values would be equal to 1 and the phase
arrows would point straight up. Instead, Fig. 7a shows that
ERA5 and IMERG precipitation agree more along the CCEW
dispersion curves and low wavenumbers and less at higher

FIG. 7. Symmetric space–time coherence spectra 158S–158N for (a) ERA5 and IMERG precipitation from 2001 to
2019, (b) ERA5 precipitation and ERA5 divergence at 850 hPa from 2001 to 2019, (c) ERA5 and IMERG precipita-
tion from April to October 2020, and (d) ERA5 precipitation and ERA5 divergence at 850 hPa from April to
October 2020. Shading shows coherence squared, and arrows show the phase between the two variables. Lines
show theoretical linear shallow-water dispersion curves for equivalents heights of 12, 25, and 50 m. The window
length for the spectra was 46 days with a 20-day overlap. There are no data at periods longer than 46 days. Phase
arrows are oriented as follows: up arrow}variables are in phase, right arrow}first variable leads, down
arrow}variables are out of phase, and left arrow}second variable leads.

WEATHER AND FORECAS T ING VOLUME 371670

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/02/23 10:02 PM UTC



frequencies. In addition, at higher frequencies IMERG tends to
lead ERA5 precipitation as indicated by the phase arrows
pointing slightly to the left of straight up. Figure 7b shows the
long-term symmetric coherence-squared spectrum between
ERA5 divergence at 850 hPa and precipitation. Large values of
coherence-squared can be seen along theoretical dispersion
curves for Kelvin, ER, MRG, westward inertio-gravity (WIG)
waves, and the MJO. Because of the 46-day low-frequency cut-
off (chosen for consistency with the model spectra below), the
MJO is only marginally resolved. Phase arrows show that low-
level convergence leads precipitation maxima by an 8th of a cy-
cle for the higher-frequency waves and becomes more in phase
for lower frequencies. For the shorter period waves such as
WIGs and MRGs this translates to 850-hPa convergence lead-
ing precipitation by 6–9 h. Close inspection shows that this
holds for the longer period waves as well, but because the life-
time of those disturbances is much longer, the lag represents a
much smaller fraction of the cycle.

To demonstrate the effect of using a short time period Figs. 7c
and 7d show the same observed coherence spectra, but for
the model verification period from April to October 2020. The
smaller sample size leads to much noisier spectra. However,
the small sample is still able to resolve peaks along the Kelvin
wave dispersion curves and regions of higher coherence values
indicating WIG and ER activity.

Next, we compute coherence spectra of the forecast time
series by lead time. For each lead time we have a continuous
6-hourly time series that spans the verification period.
Changes in coherence spectra with increasing lead time

indicates changes in the strength of the coupling between pre-
cipitation and dynamics. Initially larger coherence values tend
to be located near CCEW dispersion curves and at lower fre-
quencies and larger spatial scales (Figs. 8a,b). This indicates
that model precipitation in both GFSv15 and GFSv16 in the
first 12–24 h past initialization is largely able to initialize and
maintain large-scale CCEW events. Comparing Figs. 8a and
8b to Fig. 7c, it appears that the model tends to have peaks
at slightly higher frequencies than the reanalysis and obser-
vations. The coherent evolution of observed and modeled
precipitation decreases rapidly with lead time, which is
shown as differences in coherence between lead times of 48
and 6 h in Figs. 8e and 8f. This is likely related to the model
propagating convectively coupled phenomena at the wrong
speed along with the model not being able to maintain
those phenomena for long lead times. Based on the phase
relationship, modeled precipitation leads observed precipi-
tation indicating that the model is propagating convectively
coupled phenomena too quickly. The decrease in coherence
squared from 6- to 48-h lead time is most pronounced in the
regions of CCEW dispersion curves and higher frequencies
and wavenumbers.

In addition, coherence spectra not only allow insight in how
the model represents the coupling between dynamics and pre-
cipitation, but also whether the coupling happens at the cor-
rect scales (Figs. 8c,d). The phase relationship in regions with
significant coherence can be used to infer whether large-scale
dynamics drive precipitation in a manner consistent with
observations.

FIG. 8. Symmetric space–time coherence spectra 158S–158N between (a) GFSv15 precipitation at FH06 (FH = forecast hour) and
IMERG precipitation, (b) GFSv16 precipitation at FH06 and IMERG precipitation, (c) GFSv15 precipitation and divergence at 850 hPa
(D850) at FH06, and (d) GFSv16 precipitation and D850 at FH06. Shading shows coherence squared, and arrows show the phase between
the two variables. Difference of coherence squared at FH48 and coherence squared at FH06 is shown for (e) GFSv15 precipitation and
IMERG precipitation, (f) GFSv16 precipitation and IMERG precipitation, (g) GFSv15 precipitation and D850, and (h) GFSv16 precipita-
tion and D850.
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Coherence between precipitation and divergence is stron-
ger at 850 hPa than at 200 hPa for ERA5 (not shown). The
same is true for the model at initial time (Figs. 8c,d) and while
there are distinct peaks in coherence along CCEW dispersion
curves, overall the model coherence tends to be lower. By
48-h lead time GFSv15 shows decreased coherence between
precipitation and 850-hPa divergence and the two distinct
peaks in the Kelvin wave band have decreased by 50%–75%
(Fig. 8g). In contrast, model version GFSv16 initially has
stronger coherence between precipitation and 850-hPa diver-
gence and is still able to represent at least the lower-frequency
portion of the Kelvin wave peak at 48-h lead time (Fig. 8h)
and the decrease in coherence squared is less than for
GFSv15. At 200 hPa GFSv15 tends to have too strong coher-
ence-squared in the ER region compared to ERA5, which is
alleviated in GFSv16 but again, the coherence-squared values
decrease with lead time (not shown).

These diagnostics suggests that while both model versions
are able to initialize CCEWs, the coupling between moisture
and dynamics is too weak even at initial time. In addition, at
longer lead time precipitation is not coupled strongly to the
near-surface dynamics, although this is improved in GFSv16
which starts out with stronger coupling initially and has a
slower decrease in coherence squared at longer leads. The
diagnostic also shows that both model versions propagate
CCEWs too quickly, as was suggested in the results of section
4a above and in previous versions of the GFS (Dias et al.
2018; Bengtsson et al. 2019). Figure 8 shows almost no coher-
ence at very high frequencies. Variability at higher frequen-
cies and wavenumbers does not contribute much to S2S
predictability although this activity could still be a source of
feedback to the larger scales (Garfinkel et al. 2021). This may
be an indication of a source for these differences not ac-
counted for by the traditional statistical metrics that are per-
haps capturing more of the high-frequency/small-scale error
versus larger spatiotemporal scale error. In addition, if the
traditional metrics are capturing more of the high-frequency
error, that makes them potentially less relevant for identifying
skill on S2S time scales.

Next we examine the vertical structure of coherence-squared
within CCEW bands. Based on the decay in coherence with
lead time for the Kelvin wave band shown in section 4c, we fo-
cus on Kelvin waves here, but the approach for other waves is
analogous. Similarly to the coherence squared at a single level
shown above we compute coherence squared spectra of wave
filtered precipitation with dynamical and thermodynamical vari-
ables at all vertical levels. A detailed description of the tech-
nique can be found in appendix B.

Figure 9 shows the vertical structure of coherence-squared
of Kelvin filtered 6-hourly precipitation with dynamical fields
during the verification period. The vertical structure of the
Kelvin wave coherence squared is very similar when using ei-
ther IMERG or ERA5 precipitation and ERA5 dynamical
fields (Figs. 9a,b) with stronger overall coherence for the lat-
ter. Divergence has two peaks in coherence-squared with pre-
cipitation, one around 950–900 hPa, the main inflow level, and
one just above 200 hPa near the outflow level of deep convec-
tion that spans the depth of the troposphere. The phase

relation shows that precipitation lags convergence at the
lower peak and leads divergence at the upper peak, both by
less than 1/8 of a cycle. A deep layer of high coherence-
squared between zonal wind and precipitation exists from
the surface to about 750 hPa with precipitation leading (lag-
ging) a maximum (minimum) in zonal wind. This indicates
that zonal advection throughout this layer may play a role
in the moisture build-up prior to deep convection in the
CCEW Kelvin wave. Temperature shows strong coherence-
squared with precipitation near the surface and a secondary
peak between 650 and 600 hPa, both with precipitation lead-
ing a minimum in temperature. The peak at 650–600 hPa is
likely in part related to cooling due to melting just below the
freezing level. Specific humidity and precipitation coherence-
squared has a peak between 500 and 200 hPa with precipitation
lagging specific humidity from the surface to 650 hPa and lead-
ing above that. These phase relationships between precipita-
tion and humidity are well-known features of convectively
coupled waves (e.g., Kiladis et al. 2009). Meridional wind does
not have significant coherence-squared with Kelvin filtered pre-
cipitation. Comparing Figs. 9a and 9b demonstrates that while
the general vertical profiles are consistent, establishing clear
benchmarks/targets for these coherence profiles may not be
feasible. Uncertainty between Figs. 9a and 9b is larger than
between Figs. 9b and 9c or 9d.

Both model versions at 6-h lead time (Figs. 9c,e) have simi-
lar overall vertical structures when compared to the verifica-
tion. Main differences are that the height of the secondary
peak with temperature is slightly lower (around 750–700 hPa).
The low-level divergence peak in coherence-squared for GFSv15
and GFSv16 is stronger than the upper-level peak, similar to
ERA5. The coherence-squared peak for specific humidity is
not as well defined as in ERA5 and extends from about
750–300 hPa. The main difference between coherence-squared
of model dynamical variables with IMERG or model precipi-
tation at 6-h lead time is that the low-level peak in divergence
tends to be slightly stronger when using model precipitation,
suggesting stronger coupling between model precipitation and
model divergence (not shown).

By 48-h lead time (Figs. 9d,f) the maximum coherence-
squared values for the divergence peaks have decreased. This
decrease is more pronounced when using IMERG instead of
model precipitation (not shown). The zonal wind coherence-
squared peak is shallower, from the surface to about 900 hPa.
Temperature and specific humidity show a general decrease in
coherence-squared, but the vertical structure is still maintained.

Taken together these observations indicate that the model
is able to initialize the vertical structure of the CCEW Kelvin
wave as identified from IMERG precipitation and ERA5 and
propagate that information into the forecast for a few days.
By 120 lead time (not shown) the near surface divergence is
in-phase with precipitation instead of leading by 1/8 of a cycle.
Overall the vertical structure of coherence-squared observed
near model initialization is increasingly washed out with lead
time. This lack of coherent structure between precipitation and
model dynamics and thermodynamics is without a doubt one
root cause of the decrease in model skill in predicting CCEWs.
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FIG. 9. Vertical structure of coherence squared from 158S to 158N between Kelvin-filtered
6-hourly precipitation and dynamical variables for April–October 2020. Wavenumber–
frequency-averaged coherence squared for (a) IMERG precipitation and ERA5 dynamical
fields, (b) ERA5 precipitation and ERA5 dynamical fields, (c) GFSv15 precipitation and
dynamical fields at FH06, (d) GFSv15 precipitation and dynamical fields at FH48,
(e) GFSv16 precipitation and dynamical fields at FH06, and (f) GFSv16 precipitation and
dynamical fields at FH48. Vertical profiles are shown for zonal wind (red), temperature (black),
divergence (yellow), and specific humidity (blue). Wavenumber–frequency cross spectra are
computed between 158S and 158N and significant values of coherence squared are averaged at
each vertical level. Arrows at each level describe the phase relationship between precipitation
and the dynamical variables as follows: upward arrow}in phase, right arrow}precipitation
leads, downward arrow}out of phase, and left arrow}precipitation lags.
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d. Moisture–convection coupling

Related to circulation-convection coupling, moisture-convection
coupling is another well-known source of model errors in the
tropics. Observations indicate that conditionally averaged pre-
cipitation rate increases rapidly as column saturation fraction
(CSF), a measure of column integrated moisture, increases be-
yond a “critical point” (Bretherton et al. 2004; Peters and Neelin
2006; Rushley et al. 2018). Yet several studies have documented
models exhibiting a “too early and too gradual” increase of con-
ditionally averaged precipitation rate with increasing CSF. This
has been shown to be related to the common model bias of over
precipitating in dry regimes, which is, in part, a result of insuffi-
cient sensitivity of model convection to variations in tropo-
spheric moisture (e.g., Kuo et al. 2017).

Figure 10 shows that this precipitation pick-up is less rapid
for GFSv15 and GFSv16 at 12-h lead time, but particularly for
GFSv15 suggesting that GFSv15 convection is insufficiently
sensitive to variations in tropospheric humidity. Model pre-
cipitation rates for CSF values above 0.8 are too small com-
pared to IMERG and are too large for moderate CSF values.
The model CSF distribution shifts away from the initial bi-
modal distribution by losing density at CSF values between
0.3 and 0.6 (below the “critical point” for precipitation pick-
up). While the GFSv16 precipitation pick-up is improved over
GFSv15, especially at later lead times, the CSF distribution
shifts further from verification.

Examining the temporal tendencies of CSF and precipita-
tion rate, Wolding et al. (2020) found that column moisture
and convection coevolve in a cyclical fashion that traces a
clockwise evolution through CSF-precipitation space, a pro-
cess that is illustrated in Fig. 11a. In observations, this cyclical
evolution corresponds to a transition from predominantly
shallow, to convective, to stratiform type precipitation, a pro-
gression characteristic of several types of CCEWs and the
MJO. This evolution is robust across time and spatial scales.

Modeling and observational studies indicate that the pro-
gressive deepening of convective heating, and the associated
transition to increasingly top-heavy large-scale circulations,
play a crucial role in driving the coupled evolution of column
moisture and convection (Schumacher et al. 2004; Wolding
and Maloney 2015; Ruppert and Johnson 2015; Inoue and
Back 2017). Wolding et al. (2020) found that several climate
models produced erroneous moisture-convection coupling,
and suggested that these models may have difficulties repro-
ducing the progressive deepening of convective heating seen
in real-world convection.

Figure 11a shows the moisture-convection coupling diag-
nostic applied to ERA5 CSF and IMERG precipitation. The
magnitude and direction of the vectors indicate the bin-mean
evolution of precipitation and CSF over the time period con-
sidered. Arrow centers are located at bin centers and are spe-
cific to observations in that bin. See Wolding et al. (2020)
for more details. We note that, while the clockwise coupled
evolution seen in Fig. 11a is a robust feature seen in several
combinations of observational precipitation and reanalysis
CSF datasets examined (not shown), the strength of the co-
evolution is sensitive to the specific datasets and time periods
used. As discussed in Wolding et al. (2022), the sources of
these sensitivities are still under investigation. Nevertheless,
Figs. 11b and 11c indicate that GFSv15 shows slightly weaker
than observed coevolution initially and that coevolution loses
strength with lead time. By 120-h lead time GFSv15 only has
very small moistening and drying tendencies. Results for
GFSv16 are similar, but slightly improved. The coevolution at
12-h lead time is stronger than in GFSv15, although still weaker
than observed and it is weakened, but still distinguishable, at
120-h lead time. The weakening of the precipitation–CSF coevo-
lution with increasing lead time in both model versions warrants
further investigation and has the potential to lead the way to-
ward future model improvements.

The results presented here suggest that changes made be-
tween GFSv15 and GFSv16 lead to somewhat more realistic
moisture precipitation relationship, although this translates to
only modest improvements in the representation of the MJO
and CCEW activity and some improvement in the space-time
coherence between precipitation and dynamics. We also consid-
ered the convective adjustment time scale (Jiang et al. 2016) and
found no significant difference between the model versions.
Modest improvements in moisture–convection coupling seen here
could be related to the improvements in dynamics–convection
coupling represented by the coherence spectra in Fig. 8.

e. Python package: Tropical diagnostics

A python package including all the above diagnostics is
available for download at https://github.com/mgehne/tropical_
diagnostics. The package includes examples on how to com-
pute the diagnostics as well as the underlying computational
routines. This package is easily portable, and the authors en-
courage users to apply it to output from other NWP models,
as well as to provide feedback regarding other tropical diag-
nostics of interest. Distribution of the python package in-
cludes all underlying computational routines and users have

FIG. 10. Distribution of column saturation fraction (CSF) on the
right y axis and CSF conditionally averaged precipitation rates on
the left y axis for IMERG precipitation and ERA5 CSF (black),
GFSv15 FH12 (solid blue), GFSv16 FH12 (solid orange), GFSv15
FH120 (dotted blue), and GFSv16 FH120 (dotted orange). Distri-
butions are computed for all dates during the verification period.
The CSF distribution is the CSF probability density distribution
given as percentage of total samples, whereas the conditional pre-
cipitation rates are precipitation averages for each CSF bin.
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the ability to edit those to better fit their needs if necessary.
The package also includes netcdf data files of the EOFs used
in the CCEW activity diagnostic.

In addition to the stand-alone python package several
of the diagnostics have been included in the recent release

of METcalcpy and METplotpy (Win-Gildenmeister et al.
2021). There are also ongoing efforts to add these diag-
nostics to the MDTF diagnostics code repository, as we
anticipate that they will be useful for climate modeling as
well.

FIG. 11. Coevolution of binned precipitation and column saturation fraction for (a) IMERG–

ERA5, (b) GFSv15 FH06, (c) GFSv15 FH120, (d) GFSv16 FH06, and (e) GFSv16 FH120.
Vectors represent the bin-mean temporal difference of precipitation and CSF, and color shading
indicates the fraction of observations having a positive CSF difference within each bin. The mag-
nitude and direction of the vector indicates the net evolution of precipitation and CSF over
12 h across the lead time, with arrow centers located at bin centers. Bins containing less than
200 observations are marked with stippling.
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5. Summary and discussion

In this work we introduce a set of diagnostics designed to
evaluate tropical NWP forecasts. The utility of the diagnostics
is demonstrated by applying them to 6 months of operational
GFSv15 and retrospective GFSv16 forecasts. The diagnostics
assess model skill by lead time of zonal propagation of large-
scale precipitation features, coherence-squared spectra be-
tween precipitation and dynamical variables and the structure
of this coherence in the vertical, and CCEW activity skill and
moisture–convection coupling. We tested the sensitivity of the
diagnostics to the length of evaluation period by using as little
as 3 months and observed only minor changes, demonstrating
the value of these diagnostics during model development.
Being able to evaluate tropical variability and moisture–
convection coupling during model development is advanta-
geous when testing convective parameterization changes and
other model improvements as shown in, e.g., Bengtsson et al.
(2019, 2021). By having the diagnostics available as a function
of lead time, users can distinguish between model error and
initialization error impacts. The diagnostics introduced here
address different aspects of tropical forecast variability. One
aspect concerns the realism of the model representation of
fundamental processes/relationships of tropical convection.
The other is the question of whether the model is performing
better in a forecast setting. Taken together these metrics
speak to a third aspect: Does improving model representation
of fundamental processes directly and immediately translate
to improved forecast capabilities?

The forecast performance metric Hovmöller pattern corre-
lation assesses the zonal propagation skill of precipitation
events and shows that there is loss of potential skill during the
first hours of the forecast for both model versions. Focusing
on each CCEW type shows that the GFS has useful skill for
less than 24 h for CCE Kelvin waves and MRGs, less than 48 h
for ERs and for about 144 h for the MJO, and that differences
between model versions are not significant for this aspect.

For process-level diagnostics, coherence-squared zonal
wavenumber–frequency spectra indicate at which scales
model forecasts couple convection and large-scale circulation
and that those are similar to observed scales. The coherence-
squared spectra also show that models tend to propagate
CCEWs too fast and that coupling strength decreases with
lead time. Here we show that GFSv16 has improved compared
to GFSv15. In addition, statistical evaluation of the moisture–
convection coupling shows that GFSv16 has modest improve-
ment over GFSv15.

We demonstrate that somewhat better performance in the
tropical process-level diagnostics presented here does not nec-
essarily translate to better performance in tropical forecast
metrics and in traditional skill metrics. For example, while the
CSF–precipitation relationship shows some improvement in
GFSv16, q2m bias in the tropics is increased in GFSv16. Be-
cause some of the process-level improvements are modest,
dramatic changes in precipitation forecast skill may not be ex-
pected. This interesting discrepancy between performance
with respect to statistical metrics and the physically based
diagnostics begs the question: Which statistical metrics are

appropriate for model evaluation in the tropics? Given the re-
sults presented above it may be worth taking a closer look in
future work at the connection between the statistical metrics
and the diagnostics introduced here. A starting hypothesis
would be that this is scale dependent, with the statistical met-
rics more influenced by skill on smaller scales and the CCEW
diagnostics reflecting larger scales. We show that, while there
is a lot of room for improvement, the tropical diagnostics can
potentially provide practical additional information about
model performance when used in conjunction with more tra-
ditional skill metrics.

The results from diagnostics introduced here can be used to
reexamine the questions posed in the introduction. It appears
that based on the coherence spectra results that GFSv15
model convection does not correctly respond to the dynamic
environment. This is somewhat mitigated in GFSv16 with im-
provement in dynamic–convection coupling, but only modest
and limited improvements in moisture-convection coupling.
There also appear to be errors in how model convection feeds
back onto the large-scale circulation, leading to the incorrect
speed of propagation for CCEWs. Significant errors in precip-
itation during the first few hours of the model forecast as seen
in the Hovmöller pattern correlation, along with recent tropi-
cal predictability studies (Judt 2020; Li and Stechmann 2020)
indicate that there is potential skill the models lack at the be-
ginning of the forecast due to deficiencies in initialization.

While the dynamic–convection coupling exhibits notable im-
provement from GFSv15 to GFSv16, improvements in moisture–
convection coupling are limited and modest, leaving a lot of
room for improvement in future development of the GFS.

Based on the forecasts evaluated here it is not clear which
particular model changes (e.g., increased vertical resolution,
boundary layer turbulence scheme or changes in data assimi-
lation) are responsible for the convection–dynamics coupling
improvement. Application of these diagnostics throughout
the next model version development phase will help identify
which changes lead to improved model performance in the
tropics. Current efforts in developing improved stochastic
convection parameterizations are already benefiting from us-
age of these diagnostics (e.g., Bengtsson et al. 2019, 2021).
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CDR at daily, 0.258 resolution is available for download at NCEI
https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/
item/gov.noaa.ncdc:C00854/html.

APPENDIX A

CCEW Projection

First, observed daily precipitation is filtered for the study
period using the respective wavenumber frequency regions
defined in Wheeler and Kiladis (1999); Kiladis et al. (2014,
2016), then the first 40 EOFs of that filtered data are com-
puted (von Storch and Zwiers 1999) for tropical latitude
bands and different longitude bands, depending on the
CCEW. For propagating signals this generally results in
quadrature EOF pairs explaining nearly equal amounts of
variance. Based on the explained variance and clear separa-
tion from the following EOFs the first four EOFs (two
pairs) are kept except for MRGs where only the first two
EOFs are kept for the projection. The EOFs are robust in
the sense that using PERSIANNCDR or TRMM3B42 gives
very similar results. Details on the filtering and spatial re-
gions used for the EOF analysis are given in Table A1.

Wave activity is defined by the projection of observed or
forecast precipitation anomalies onto the EOFs, squaring
the result, averaging over the EOFs, and then taking the
square root. The result is a time series of CCEW activity
for both the observed and modeled precipitation. Model
precipitation anomalies are computed by lead time by re-
moving the time mean over the 4 months of data available.
We note that for longer time series computing the lead
time dependent climatology for each day of the year and
computing anomalies from that would be preferable.

To assess the ability of the model to maintain CCEW ac-
tivity as a function of lead time, the CCEW skill is defined
as the correlation between forecast and observed CCEW
activity at a given lead time (t):

AC(t) �

∑N
i�1

∑K
k�1

ok(ti)fk(ti, t)�����������������∑N
i�1

∑K
k�1

o2k(ti)
√ �������������������∑N

i�1

∑K
k�1

f 2k (ti, t)
√ : (A1)

Here, fk(ti, t) is the forecast precipitation projection onto
EOF k at lead time t and time ti; ok(ti) is the projection of
observed precipitation onto EOF k at time ti; and N is the

total number of times and K = 4 or 2 for CCEWs and the
MJO, respectively.

APPENDIX B

Vertical Profiles of Coherence Squared

To compute coherence squared for a particular CCEW
band at all vertical levels, precipitation is first filtered for
the CCEW band of interest (see Table A1 for filter regions)
and the space–time cross-spectrum with a dynamical field
(e.g., winds, temperature, or specific humidity) is computed
at each vertical level. When filtering model precipitation for
CCEW wavenumber–frequency regions we pad the time se-
ries with IMERG precipitation starting in 2001 prior to the
start of the forecast period (Janiga et al. 2018).

Because precipitation is filtered, the coherence-squared is
not significant outside the filtered wavenumber–frequency
region. The significant coherence-squared values are aver-
aged in wavenumber and frequency, resulting in a single
number per vertical level. All other cross-spectral compo-
nents are also averaged where the coherence-squared is sig-
nificant. The averaged co and quadrature spectra are used
to estimate a phase angle for each vertical level.

Statistical significance of the coherence-squared is estimated
by computing a background coherence-squared that consists
of two components. The first is estimated by running one
time series backward and computing the coherence-squared
spectrum (CBG). This approach retains the autocorrelation of
both time series, but destroys any temporal relationship
the time series had. The second is a distribution of random
coherence-squared spectra (Crand), where both samples are
drawn from a random normal distribution with zero mean
and standard deviation matching the filtered precipitation
and dynamical variable time series, respectively. The sum
CBG 1 Crand is used to determine the significance level for
coherence-squared at each wavenumber–frequency. Here
we choose a significance level of 0.95, which means that
coherence-squared values larger than the 95th percentile
of the background distribution are considered statistically
different from zero.
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